Innovative Technology in Construction and Work Zone Safety

Andy Schaudt, M.S.
Research Associate, Advanced Systems and Applications

August 3rd, 2011
• Leader in transportation safety and human factors research
 • Twenty-five (25) years of transportation safety research
 • Largest group of transportation safety researchers in the world
 • Almost 300 employees (research, testing, teaching, training, administrative, support, outreach and public service)
 • 70+ active projects w/public and private customers
• Innovative and world-class capabilities
 • Pioneer and internationally recognized as the leader in Naturalistic Driving Assessment
 • Operator of the Virginia Smart Road
• Impact on national transportation policy
 • Driver distraction, truck driver fatigue, night visibility enhancement, ITS technology evaluation
VTTI Capabilities and Resources

- Expertise and experience
 - Driving data acquisition
 - Data storage and handling
 - Human Factors
 - Data analysis, mining

- Facilities
 - Virginia Smart Road
 - The Instrumented City (Blacksburg)
 - Crash simulation – Injury Biomechanics
 - National Tire Research Center – Virginia International Raceway
 - Truck simulator
 - Full mechanical and electronic fabrication labs
 - VT High Performance Computing Center 1.0 PetaByte, 100 Teraflop dedicated

- Resources
 - Vehicle fleet including trucks, buses, vans, pickups, SUVs, cars, motorcycle(s)
 - Data collection hardware, software, analysis programs
Outline

• Naturalistic Driving Research
 • Analysis of current databases for work zone related events
 • Data collection effort performed in work zones

• Virginia Smart Road
 • Platform for work zone related research
 • Example studies
 • Future research ideas

• Connected Vehicle Initiative
Naturalistic Data Collection

• “in the natural or original position or place”
• Collecting driver behavior and performance data in a naturalistic environment (e.g. several months to one year)
• Examples:
 • as light vehicle drivers commute to/from work (e.g., 100-Car Study)
 • as truck drivers operate their vehicles on revenue-producing runs
• Able to get detailed pre-crash/crash information along with routine driving behaviors (data sensors + video)
• Highly capable data acquisition systems (well beyond EDRs)
Naturalistic Driving Research

- Use current Naturalistic Driving Databases to investigate work zones
 - Locate by triggered events (e.g. crashes, near-crashes, or crash-relevant conflicts)
 - Locate by GPS for specific target areas
 - Evaluate work zone design
- Outfit work zones and/or construction equipment with Data Acquisition Systems and collect data in operating environments
Vehicle-width Measurement System for Work Zones

- VDOT/VCTIR tasked VTTI with investigating the feasibility of designing a vehicle-width measurement system.

Key system requirements:
- Identify over-width vehicle
- Accurate
- Portable
- Field deployable
- Driver warning/notification capability

Sensors evaluated:
- Rotary laser
- Ultrasonics
- Machine vision
Virginia Smart Road – Example Studies

Driving Transportation With Technology
Virginia Smart Road – Example Studies

• Warning Lights on Roadway-Operations Equipment
 • TRB tasked VTTI and the National Institute of Standards and Technology with developing guidelines for warning lights used on construction, maintenance and utility vehicles
 • Lighting configurations selected for Smart Road testing
 • Attention getting
 • Discomfort glare
 • Pedestrian detection
 • Vehicle identification
 • Urgency
 • Daytime/Nighttime
 • Clear, rainy, and foggy weather
Virginia Smart Road – Example Studies
Virginia Smart Road – Future Research

• Work Zone/Construction design can be evaluated by VTTI on the Smart Road
 • Zone Areas
 • Advance Warning Area
 • Transition Area
 • Activity Area
 • Termination Area
 • Targets of Evaluation
 • Driver performance
 • Driver perceptions
 • System testing
 • Guidelines, standards, protocol development
Vehicle connectivity provides a bi-directional ability to share information between:

- Vehicle to Vehicle (V2V)
- Vehicle to Infrastructure (V2I)
- Vehicle to Device (V2D)

Wireless communication channels are used:

- Cellular for general information
- Dedicated Short Range Communications (DSRC) for low-latency, robust, secure information

Various in-vehicle and roadside applications are enabled with the communicated information.
It’s All About Connectivity

- E-payment Transactions
- Signal Phase and Timing Information
- V2V Safety Messages
- Real Time Network Data
- Situation Relevant Information

“The Network”

Opportunity for Innovation

*Slide adapted from USDOT
Opportunity for Safer Driving

- **Greater situational awareness**
 - Your vehicle can “see” nearby vehicles and knows roadway conditions you can’t see

- **Reduce or even eliminate crashes thru:**
 - Driver Advisories
 - Driver Warnings
 - Vehicle Control

IntelliDrive has the potential to address 82% of the vehicle crash scenarios involving unimpaired drivers

Slide adapted from USDOT
Thank you!

Questions?

Andy Schaudt
aschaudt@vtti.vt.edu