MODOT Alternate Pavement Approach

Dave Ahlvers

2009 AASHTO Subcommittee on Construction
Cost Control in Missouri
implementation - *the road to success*

- **Past Decade** – Letting schedules optimized
 - **Spring 2002** – Performance Spec.s written
 - **Fall 2003** – Alternate bidding pavements required
 - **December 2004** – Practical Design concept pitched to Commission
 - **Spring 2005** – Districts challenged to cut STIP 10%
 - **Fall 2005** – First Practical Design Policy written
 - **2006** – First Design/Build Projects
 - **Fall 2007** – *First ATC Project*
Alternate Pavement Bidding
Responsibility

- 5,000 miles of Major Roads
- 27,000 miles of Minor Roads
- 10,000 Bridges
First Alternate Bidding Experiment

- Missouri let five pilot projects in 1996 under the auspices of FHWA SEP-14
- Project conditions included
 - Design costs within 15% of each other
 - At least one mile of paving
 - Primary work was paving
 - Minimal grade change impact
 - Area unit prices
- An LCCA adjustment factor was used
Annual Pavement Quantities

<table>
<thead>
<tr>
<th>Year</th>
<th>Asphalt</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tons</td>
<td>$$</td>
</tr>
<tr>
<td>1992</td>
<td>4,950,706</td>
<td>106,542,443</td>
</tr>
<tr>
<td>2000</td>
<td>5,115,218</td>
<td>200,192,172</td>
</tr>
<tr>
<td>2005</td>
<td>8,035,462</td>
<td>397,618,849</td>
</tr>
<tr>
<td>2006</td>
<td>2,467,655</td>
<td>134,679,642</td>
</tr>
<tr>
<td>2007</td>
<td>3,745,808</td>
<td>178,237,592</td>
</tr>
<tr>
<td>2008</td>
<td>2,087,204</td>
<td>122,035,246</td>
</tr>
</tbody>
</table>
Alternate Bidding Restart

- Pavement Team; composed of MoDOT, PCC and HMA paving industry, and FHWA representatives; recommended in 2003 to restart alternate pavement design bidding
- Open, Transparent Process
- LCCA assumptions difficult to reach consensus on
Alternate Bidding Pavement Design

• From 1993 – 2004 a simple catalogue design, derived from the 1986 AASHTO Guide for the Design of Pavement Structures, was used for new Jointed Plain Concrete pavements.

• The Pavement Team recommended adopting a mechanistic-empirical (M-E) design approach for pavements in Missouri.
Alternate Pavement Design Bidding

maximizing competition

‘Structurally Equivalent’ PCC and HMA bid competitively by using life cycle cost analysis correction factors.
Alternate Pavements - Policy

- Alternate pavement design with a LCCA factor for projects with 7500 sq yd in a continuous area
- Optional pavement designs without a LCCA factor for smaller paving quantities
- New full depth and major rehabilitation
M-E Design Implementation

• Started using nationally-calibrated MEPDG program at the beginning of 2005 for JPCP and HMA designs.

• Average JPCP thicknesses reduced by
 – ~ 2” for high truck volume routes
 – ~ 1” for low to medium truck volume routes

• Average HMA thicknesses reduced by
 – ~ 3-4” for high truck volume routes
 – ~ 1-2” for low to medium truck volume routes
Reasons for Selecting NCHRP M-E Pavement Design Guide

• Common traffic and climatic module platforms are provided for both PCC and HMA analysis
• Distress models were calibrated and validated with largest pavement database ever
• New materials in designs could be evaluated
• Probably will become most defensible method because of AASHTO adoption
Alternate Pavement Designs

• New construction (based on M-E Design Guide)
 – JPCP
 – Conventional HMA

• Rehabilitation (default thickness derived partly from M-E and empirical data)
 – 8” Unbonded PCC overlay (UBOL)
 – Rubblization w/ 12“ HMA overlay
Method of Measurement

• New JPCP and HMA measured in square yards
• Unbonded overlays measured in cubic yards for furnishing and square yards for placing
• HMA overlay (on rubblized PCC) measured in wet tons
Alternate Pavement Bidding
seeking innovation

Performance specifications
Eliminate method specifications where possible.
Alternate Design Life Cycle Costs

• LCCA used solely to determine adjustment factor for 45-year design life
• Life cycle costs considered
 – Initial construction
 – Maintenance
 – Rehabilitation
 – Salvage value
 – User costs
Rehabilitation Assumptions

• HMA
 – Mill and fill wearing course **at 20 years** in driving lanes
 – Mill and fill wearing course **at 33 years** across whole surface

• PCC
 – Diamond grind whole surface and perform full-depth repairs on **1 ½ % of surface area at 25 years**
Adjustment Factor

Adjustment factor = PW (future HMA rehab) – PW (future PCC rehab)
Adjustment factor calculated by Estimating Section using current market unit prices

Present worth (PW) values of future rehabilitation determined using OMB discount rates.

Life-Cycle Cost Adjustment Worksheet

Job Number	22F 487
County	Rancho
Route	03
Call	040176-201
Letting Date	07/11/04

| Total Area of Paving | 415,518 SY |
| Area of Traveled Way | 256,781 SY |

| SP125 Weight Factor | 1.97 Tons/CY |

Estimated Unit Price for SP125	$3.78 /Ton
Estimated Unit Price for Cost Milling	$1.27 /CY
Estimated Unit Price for Diamond Grinding	$1.31 /SY
Estimated Unit Price for Pavement Repair**	$100.00 /SY

**Includes all related Pavement Repair Items

Total LCCA Adjustment Factor For Job Special Provision: $1,469,204

MoDOT AC Projection

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 Year Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discount Rate: 3.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mill Surface Lift Traveled Way</td>
<td>1</td>
<td>20</td>
<td>256,781 SY</td>
</tr>
<tr>
<td>AC Resurfacing Traveled Way</td>
<td>1.75</td>
<td>20</td>
<td>24,590 TON</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>20%</td>
<td>20</td>
<td>$296,271.30</td>
</tr>
<tr>
<td>Mobilization</td>
<td>5%</td>
<td>20</td>
<td>1 Price</td>
</tr>
<tr>
<td>Construction added costs</td>
<td>12.9%</td>
<td>20</td>
<td>1 Price</td>
</tr>
</tbody>
</table>

33 Year Maintenance						
Discount Rate: 3.50%						
Mill Surface Lift - all	1	33	415,518 SY	$1.47	$610,811	$196,280
AC Resurfacing (100%) - all	1.75	33	39,702 TON	$38.78	$1,543,119	$49,870
Miscellaneous	20%	33	1 Price	$430,796.09	$430,796.09	$138,430
Mobilization	5%	33	1 Price	$129,236.83	$129,236	$41,629
Construction added costs	12.9%	33	1 Price	$350,599.86	$350,599.86	$112,602

**Years of analysis: 45

Total Cost: $4,967,569, 2002,932

**Discount Rate: 45%

Equivalent Uniform Annual Cost: 89,037

MoDOT PCC Projection

<table>
<thead>
<tr>
<th>Year</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 Year Maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discount Rate: 3.00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traveled Way Slab Replacements</td>
<td>1.5%</td>
<td>25</td>
<td>3,852 SY</td>
</tr>
<tr>
<td>Diamond Grinding of Traveled Way</td>
<td>25%</td>
<td>25</td>
<td>256,781 SY</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>20%</td>
<td>25</td>
<td>1 Price</td>
</tr>
<tr>
<td>Mobilization</td>
<td>25%</td>
<td>25</td>
<td>1 Price</td>
</tr>
<tr>
<td>Construction added costs</td>
<td>12.9%</td>
<td>25</td>
<td>1 Price</td>
</tr>
</tbody>
</table>

**Years of analysis: 45

Total Cost: $1,209,081, 603,728

**Discount Rate: 45%

Equivalent Uniform Annual Cost: 23,726
Alternate Bid Selection

Low bidder = lower of
(PCC bid price) vs. (HMA bid price + adjustment factor)
Alt. Pavement Update for Jobs Thru July 2009 with LCCA Factor

- 124 Alternate Projects to Date ($1.645 bil)
 - 118 Full Depth ($1.562 bil)
 - 6 Rehabilitation ($82.6 mil)
- Full Depth
 - 40 Asphalt Awards ($451.7 mil)
 - 78 Concrete Awards ($1.111 bil)
- Rehabilitation
 - 1 Asphalt Award ($2.6 mil)
 - 5 Concrete Awards ($80 mil)
Results – Difference in Low Bids

– Low PC Bids vs. Low AC Bids w/o LCCA Factor
 • PC Total – $645,054,399
 • AC Total - $666,875,468
 • Difference - $21,821,069 (3.4%)

– Low PC Bids vs. Low AC Bids w/ LCCA Factor
 • PC Total – $645,054,399
 • AC Total - $691,278,469
 • Difference - $46,224,069 (7.2%)

LCCA Factor has Determined Low Bid 3 Times since October 2003.
Number of Bidders

<table>
<thead>
<tr>
<th>Year</th>
<th>Bids/Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>3.7</td>
</tr>
<tr>
<td>2006</td>
<td>4.2</td>
</tr>
<tr>
<td>2007</td>
<td>4.2</td>
</tr>
<tr>
<td>2008</td>
<td>4.8</td>
</tr>
<tr>
<td>Alt. Paving Projects Oct 03 to Present</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Price Summaries

- 3-year average asphalt price/ton for alternate paving projects is 5.1% below that for non-alternate projects and 4.8% below the 3-year average for all projects.

- 3-year average concrete price/CY for alternate paving projects is 8.6% below that for non-alternate projects and 2.8% below the 3-year average for all projects.
Other Optional Bidding

- Intermediate overlays
 - 5 ¾” HMA vs.
 - 5” ‘big block’ PCC
- Thinner overlays
 - 3 ¾” HMA vs.
 - 4” ultrathin PCC or 5” ‘big block’ PCC
Other Optional Bidding

- Thin overlays
 - 1 ³⁄₄” HMA vs.
 - 1” HIR plus surface treatment
 and
 - 3 ³⁄₄” HMA vs.
 - 4” CIR plus surface treatment
Optional Shoulder Designs

- A2 design
 - 5 3/4” HMA
 - 5 3/4” PCC

- A3 design
 - 3 3/4” HMA
 - 4” PCC (also roller compacted concrete pavement option)
An independent third party peer review was performed in late 2005 by a respected national consultant on MoDOT’s alternate pavement bidding process.

“It appears that MoDOT has developed a balanced, innovative program that could serve as a national model for other highway agencies throughout the nation and beyond.”
Thank You!

Questions?

For more information including example plans and specifications go to:
http://epg.modot.mo.gov

david.ahlvers@modot.mo.gov
(573) 751-7455