Thermal Integrity Testing of Foundations

Juan F. Castellanos, P.E.,
FDOT State Construction Geotechnical Engineer
Cross Sonic Logging (CSL) testing
CSL testing

- Information inside tubes perimeter only.
- Debonding and bleeding issues.
- Steel tubes preferred
Gamma- Gamma Logging

- Needs **PVC access tubes (100 mm range)**
- Local cover information
- Uses radioactive materials (Cesium 137)
- Probe **must** be retrieved
- Long probe vs. bent PVC tubes
Coverage by GGL and CSL

![Graph showing coverage by GGL and CSL](image)
What does Thermal Integrity Testing show:

- Tests the entire volume of concrete (100%)
- Cage alignment
- Radius vs. Depth-Estimated shaft shape
- Necks, bulges, or inclusions
- Concrete cover
- Quality of concrete
Thermal Integrity Testing

Thermal Probe

Depth Encoder Assembly

Data Acquisition System
Thermal Integrity Testing
Method A - Uses Probes through Access Tubes
Method B - Uses Embedded wires attached to reinforcement cage
Thermal Integrity Testing

- It may be used on both Drilled Shafts and Auger Cast Piles
- Does not have debonding or bleeding issues (as CSL)
 - No false alarms
- It could work in PVC and steel tubes and in embedded wires in concrete
 - Access tubes not necessary

Limitation: Test window limited to few days.
Concepts used by Thermal Testing
Temperature radial distribution for several sizes
Thermal Integrity Testing

Reinforcement Cage

Drilled Shaft

Logging Tubes

Normal Heat Signature
Field Observations

- Little to no cage eccentricity (*all tubes same temp throughout*)
- Clean top and toe signature (*approximate 1 diameter temperature roll-off top and bottom*)
- Good Shaft
Thermal Integrity Testing

- Drilled Shaft
- Reinforcement Cage
- Logging Tubes
Shaft Heat Signature

Temperature

Temperature vs Depth

- 70-80
- 60-70
- 50-60
- 40-50
- 30-40
- 20-30

Avango
Anomaly

Interrupted Heat Signature

Thermal Integrity Testing
Optimum testing time for different size shafts
3-D image of a shaft with loss of concrete cover
Analysis

There are 4 levels of analysis:

• Level 1: Direct Observation of Temperature Profiles
• Level 2: Superimposed construction logs and concrete yield data. Radius determination.
• Level 3: Three dimensional thermal modeling
• Level 4: Signal matching numerical models to field data.
Example 2 - Level 2
FDOT EXPERIENCE AND PROSPECTIVE

• EXPERIENCE:

 • As of February 2016, TIP used successfully on 386 drilled shafts statewide (299 in Tampa).
 • TIP Test has been accepted by consultants and the industry.
 • Currently 4 Consultants in Florida have the capability of performing the test.
 • Two FDOT offices own the equipment: State Materials Office and the D4-6 Materials Office.

• FDOT PROSPECTIVE

 • Specifications still uses CSL as the primary integrity testing
 • Thermal Integrity Testing is included in the specs as an option for verification
 • Looking forward to use it as the primary Integrity Testing for drilled shafts
 • Future inclusion on acceptance for Auger Cast Piles (Bridge applications)
Acknowledgements

- University of South Florida, Civil and Environmental Engineering
- Florida Geotechnical Engineers (FGE)
- Pile Dynamics, PDI
- Drs. Gray Mullins and Danny Winters
QUESTIONS ?
If you want to do it yourself:

- **Machine costs $34 K** (Includes depth encoder, TAPP, data acquisition system. It does not include TAP for wires)
- **Wires with thermometers @ 12”: $5/ft**
- **TAP: $350 each**
- **Consultant typically charge us $2500 per test (including field collection and report. Same cost as they charge us for CSL testing).**
• **FDOT REPORT REQUIREMENTS:**

 • *T vs Depth graphs* (measured and theoretical):
 - Indication of unusual temperatures, including cooler local deviations from the average at any depth from the overall average over the entire length.
 - Overall T average temperature and theoretical temperature.
 - Variations in temperature between access tubes which may indicate variations in cage alignment.

 • **Radius** of the shaft throughout the entire depth.
 • **Alignment** of the reinforcing cage along the shaft
 • **Calculated concrete cover** throughout the entire depth.
 • **Conclusion** stating whether the tested shaft is free from integrity defects and meets the minimum concrete cover and diameter requirements by the specifications.
 - When anomalies are detected, include in the report a three dimensional rendering of the shape of the shaft.